Problem 1.48

Evaluate the following integrals:
(a) $\int\left(r^{2}+\mathbf{r} \cdot \mathbf{a}+a^{2}\right) \delta^{3}(\mathbf{r}-\mathbf{a}) d \tau$, where \mathbf{a} is a fixed vector, a is its magnitude, and the integral is over all space.
(b) $\int_{\mathcal{V}}|\mathbf{r}-\mathbf{b}|^{2} \delta^{3}(5 \mathbf{r}) d \tau$, where \mathcal{V} is a cube of side length 2 , centered on the origin, and $\mathbf{b}=4 \hat{\mathbf{y}}+3 \hat{\mathbf{z}}$.
(c) $\int_{\mathcal{V}}\left[r^{4}+r^{2}(\mathbf{r} \cdot \mathbf{c})+c^{4}\right] \delta^{3}(\mathbf{r}-\mathbf{c}) d \tau$, where \mathcal{V} is a sphere of radius 6 about the origin, $\mathbf{c}=5 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}$, and c is its magnitude.
(d) $\int_{\mathcal{V}} \mathbf{r} \cdot(\mathbf{d}-\mathbf{r}) \delta^{3}(\mathbf{e}-\mathbf{r}) d \tau$, where $\mathbf{d}=(1,2,3), \mathbf{e}=(3,2,1)$, and \mathcal{V} is a sphere of radius 1.5 centered at $(2,2,2)$.

Solution

Part (a)

$$
\begin{aligned}
\int\left(r^{2}+\mathbf{r} \cdot \mathbf{a}+a^{2}\right) \delta^{3}(\mathbf{r}-\mathbf{a}) d \tau & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(\mathbf{r} \cdot \mathbf{r}+\mathbf{r} \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{a}) \delta^{3}(\mathbf{r}-\mathbf{a}) d \mathbf{r} \\
& =\mathbf{a} \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{a} \\
& =a^{2}+a^{2}+a^{2} \\
& =3 a^{2}
\end{aligned}
$$

Part (b)

$$
\begin{aligned}
\int_{\mathcal{V}}|\mathbf{r}-\mathbf{b}|^{2} \delta^{3}(5 \mathbf{r}) d \tau & =\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}(\mathbf{r}-\mathbf{b}) \cdot(\mathbf{r}-\mathbf{b}) \delta^{3}(5 \mathbf{r}) d \mathbf{r} \\
& =\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}(\mathbf{r}-\mathbf{b}) \cdot(\mathbf{r}-\mathbf{b})\left[\frac{1}{|5|^{3}} \delta^{3}(\mathbf{r})\right] d \mathbf{r} \\
& =\frac{1}{125} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}(\mathbf{r}-\mathbf{b}) \cdot(\mathbf{r}-\mathbf{b}) \delta^{3}(\mathbf{r}) d \mathbf{r} \\
& =\frac{1}{125}(\mathbf{0}-\mathbf{b}) \cdot(\mathbf{0}-\mathbf{b}) \\
& =\frac{1}{125}(\mathbf{b} \cdot \mathbf{b}) \\
& =\frac{1}{125}\left(0^{2}+4^{2}+3^{2}\right) \\
& =\frac{1}{5}
\end{aligned}
$$

Part (c)

Observe that the magnitude of $\mathbf{c}=5 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}$ is $\sqrt{5^{2}+3^{2}+2^{2}} \approx 6.16$, which means the point $(5,3,2)$ lies outside the sphere that the volume integral is over. Therefore,

$$
\begin{aligned}
\int_{\mathcal{V}}\left[r^{4}+r^{2}(\mathbf{r} \cdot \mathbf{c})+c^{4}\right] \delta^{3}(\mathbf{r}-\mathbf{c}) d \tau & =\iiint_{x^{2}+y^{2}+z^{2} \leq 6^{2}}\left[r^{4}+r^{2}(\mathbf{r} \cdot \mathbf{c})+c^{4}\right] \delta^{3}(\mathbf{r}-\mathbf{c}) d \mathbf{r} \\
& =0
\end{aligned}
$$

Part (d)

Start by calculating the distance that the point $(3,2,1)$ is from $(2,2,2)$, the center of the sphere being integrated over.

$$
\sqrt{(3-2)^{2}+(2-2)^{2}+(1-2)^{2}}=\sqrt{2} \approx 1.414
$$

Since the radius of the sphere is $1.5,(3,2,1)$ lies within it. Therefore,

$$
\begin{aligned}
\int_{\mathcal{V}} \mathbf{r} \cdot(\mathbf{d}-\mathbf{r}) \delta^{3}(\mathbf{e}-\mathbf{r}) d \tau & =\quad \iiint_{\substack{(x-2)^{2}+(y-2)^{2} \\
+(z-2)^{2} \leq 1.5^{2}}} \mathbf{r} \cdot(\mathbf{d}-\mathbf{r}) \delta^{3}(\mathbf{e}-\mathbf{r}) d \mathbf{r} \\
& =\quad \iiint_{\substack{(x-2)^{2}+(y-2)^{2} \\
+(z-2)^{2} \leq 1.5^{2}}} \mathbf{r} \cdot(\mathbf{d}-\mathbf{r})\left[\frac{1}{|-1|^{3}} \delta^{3}(\mathbf{r}-\mathbf{e})\right] d \mathbf{r} \\
& =\quad \iiint_{\substack{(x-2)^{2}+(y-2)^{2} \\
+(z-2)^{2} \leq 1.5^{2}}} \mathbf{r} \cdot(\mathbf{d}-\mathbf{r}) \delta^{3}(\mathbf{r}-\mathbf{e}) d \mathbf{r} \\
& =\mathbf{e} \cdot(\mathbf{d}-\mathbf{e}) \\
& =\langle 3,2,1\rangle \cdot(\langle 1,2,3\rangle-\langle 3,2,1\rangle) \\
& =\langle 3,2,1\rangle \cdot\langle-2,0,2\rangle \\
& =3(-2)+2(0)+1(2) \\
& =-4 .
\end{aligned}
$$

